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Abstrac t - In this paper the asymptotic behavior of the discrete mini-

mum variance output feedback control law is investigated. It is shown

that this control law results in an ..~symptotically stable closed-loop

system. For time invariant systems, the output feedback gain tends to

a periodic function of time which is easier to implement in the feed-

back loop .
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I. INTRODUCTION

Consider the stochastic linear time-varying system S~ whose output  can

only be measured at discrete instants of time and is given by

k(t) = F(t)x(t) + C(t)u(t) + D(t)w(t) (1)

y(t
1) = ll(t1)x( t~) + v( t1)

k

where F(t), G( t) ,  and D(t) are nxn, nxr, and nxp continuous matrices ;

w(t), the disturbance In the dynamics Is a stochastic process with a

gaussian distribution whose first- and second-order statistics are

given by

E[w(t):J = 0; E{w(t)w’(r)J = ~ (t) 5 (t - r )  (2)

where Q(t) is a continuous positive semidefinite pxp matrix and o(.) is

the Dirac delta function. Similarly [v(t1), i= 0, 1, ... ] is an

rn-dimensional gaussian white sequence for which

E [v(ti)J 
— 0; E [v(t~)v ( t~)] — R(ti) 6 (3)

where R( t~) is a positive definite mxiii matrix. The initial state x(t )

of sys tem S~ is assumed to be a random variable for which

E [x(t0)J 0; E {X(t
0

)X t ( t )]  — (4)
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Furthermore assume that for  all  t ~ t and t
0 i

E [w( t)v’(t
1)]  = E [W ( t ) X I ( t ) ]  = E [v ( t ~ ) x ’( t )

~1 = 0 (5)

Let the class of admissible controls U , be the set of linear functions
C

of the current output measurements , which is given by

~~ 
= [~ € R~ = U[t,y(t1

) ] = C1(t)y(t1) ; t1~ t<t j+i,i=0,l,. .N_l (6)

Then it was shown in reference {I] that the control law

u*(t ,y(t~)) = —G’(t)~~~’(t~~t) W~~
(t1,ti÷1

) E*(t )IV(t )[H(t)

E*(t )1V(t ) + R(t
1)] 

—l 
y(t1

) (7)

where

E*(t )  =
~~

(tj+i,tj) [E
*(tj) — ~ *(t )H’(t ) [H(t 1) 

E*
(t ) HI(t )

+ R( t
1)] 

—l H(t~) ~
*(t)] 4~ ‘(tj÷i,tj) +Q( tj+i,tj) (8)

with t
1+1

and 

E*( )  - 
~ 

; Q ( t
1~~1 

t~) = [cP(t j +1, t )D(t) Q(t ) D’(t )4 ’(t~~1 ,t)dt

t
i+l

W(t 1, t j+i) — f •(t1, t) C(t) c’(t ) + ‘( t1, t) dt (9)

ti

minimizes the coit function

J(u) — 1/2 E [x I(t
j+i) S~~~ S1 x(tj+i) J I — 0, 1, ..., N—i (10)

subject to the constraint, and assumptions (1) - (6), provided that

W(t j , t j +i) is invertible.
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The objective of this paper is to present some of the asymptotic prop-

erties of the discrete minimum variance output feedback control law (7)

and to show that the resultant closed-loop system is asymptotically

stable in the sense of Lyapunov. It should be noted however, that the

results developed in this paper , make use of the properties of the co-

variance equation (8) of the closed-loop system, which have been widely

investigated in the literature [2], [3], [4] , and [5], in connection

with the Kalman filter. Before proceeding, it will be assumed through-

out the following that the assumptions

(A.l) 14’(t,s)ii ~ ~~ 3(It — s~ ) Vt and s (11)

(A.2) 0< O il ~ 
W(ti,tj+i) ~ 

Vi (12)

(A.3) 0 
~l
I 

i=k-N 
~ (tk, ti+I)Q( tj,ti+l) ~~‘(tk,ti+l)

Vk ~ N (13)

k
(A.4) 0< ~i~ I ~ E $ I ( t , t

k
) H I ( t )R ~~

l ( t j ) }I(t )4i( t , t
k

)

i-k-N

Ic~~ N (14)

are satisfied for som e real °
~~ 

025 03* ~ l. ~2’ V 1, and

I



II . STPLBILITY OF THE DISCRETE MINIMUM-VARIANCE

OUTPUT FEEDBACK CONTROL SYSTEM

In this section the asymptotic stability of the discrete time minimum

variance closed-loop system will be investigated in the case when no

noise or disturbances are present in the measurements or the dynamics.

To be specific , let the system under consideration be given by

Sc(t) = F(t)x(t) + G(t)u(t) (15)

y(ti) = H(ti)x(tj)

and let u(t) be given by

u(t) = u*(t,y(tj))_ —G’(t) 4*I(tj,t)W
4
(tj,ti+i) ~

*(ti)~~ (ti)

[H(t1
) Z*(t )H I(t) + R(t

i)]~~ 
y(t~) (16)

For this control law the state at the sampling times is given by

x(tj÷j) — +(t1+1, tj) { I  — Z*( )H ’(  )[H( ) E *(t )HI(t )

+ R(ti)] 
‘H(t 1) } x(ti) (17)

The objective of this section is to show that starting from any initial

condition x(t), the state of the closed-loop system (17), x(ti),tends

to zero as t~ approaches infinity.

Let P*( t )  be given by

- 4 -  Li



p*( )  = {~ *() — E*( )IP( ) I H(t
1) 

~~*( ) I ( )

+ R(t~) J ‘H( t~ ) *( )  } (18)

Then it was shown in references [2] and [3] that 
*( )  is bounded

from above and below for every i, provided assumptions (A.3) and (A.4)

are satisfied . These results are summarized in the following lemma.

Lemma 1: (Deyst and Price) If assumptions (A.3) and (A.4) are satis-

fied, then P*(ti+l
) is bounded from above and below for every i by

2
_____ * 

N’y f3

+ 
~~~~ 

}i ~ P (tj+i) 
� + ~ 2 } I (19)

Theorem 1: Assume that (A. 1) through (A.4) are satisfied , then the

discrete time closed-loop system (17) is uniformly asymptotically

stable in the large and

*
-l

vIx (tj+i),ti+jJ — x’(t
i+i) ~

m (ti,ti+1)P (ti+i
)c
~
(tj,ti+i)x(tj+i)

(20)

is a Lyapunov function, where P*(ti+l) is given (18)

~1
Proof: Using assumption (A.l), it can be easily deduced that

fç
2

( p t ~~~1 
— tif )  

~ 
4’(ti,ti+i

)t
~
(ti,ti+i) ~ o~

(It H4 — til) (21)

— 5 —



Furthermore, from (21) and (19) it can be deduced that for all

2 —2
{ 2 ~~~~ }i � 

~
‘(tj,tj÷i)P

~
1
(ti+i)~

(ti,tj 1) ~
2

(1 + 
~1’~

’1) 20
3
}I (22)

Hence V [x(t
i+i

),tj+i J is uniformly bounded from above and below for

every t~ , i.e., there exist continuous nondecreasing scalar functions

~ 
I )I x (t~~1)ii I and 621 V x(t1+1)JI j such that 61

(0) = ó 2(O)=O and

O < oiIII x(t i+1)II � ~~~ 
~~~i+1~’~ j+1 ~ o21 II x (t1~ 1) H I

vt~ (23)

Hence (20) is a Lyapunov function. To show that (17) is uniformly

asymptotically stable in the large, we need to show (6~ , that for some

finite N, there exists a negative definite function 63[Il x(t~+1)ll 
]

such that Vt
1 >

— 
v[x(tj+1),ti+1] — V[x(ti_.N),tj..~N] ~ 6

3
[ x(ti+i) III < 0 (24)

Consider the function

—l
V [x(t

~+1
),t

~+1
) — x(t

i+l
)4,t (tj,ti+l)P* (t )$(t t )x(t ) 

.. -

Substituting for x(ti+i) from (17) we get

- 6 -  ‘i



V[x(tj+i),ti+i] xI(t
i)~~

* (ti
)p*(tj+l)z

* (t )x(t )

= x 1 (t
1
)E * (t

1
)x(t

1
) - x ’(t

1)H’(t~) [H(t .)~~
*(t.)

I1 ’ ( t 1) + R(t
i)] ~~

H(ti)x( t
i
) (25)

Since

E *( t )  = ~~(tj,tj 1)P
*
(t

1)
ittI(t~ ,t~~

1
)+ Q( t1, t1 1) (26)

it follows that

~ 4(ti
,t

i l
)P*(tj)41(tj,ti l ) (27)

from which it can be deduced that

*-1 
*
-1

~~
(ti_i,ti

)P (tj)di(ti i , tj) ~ Z (t
i) (28)

From (28) and (25) we have

v[x(t
~+1

),t1+1] ~ V [x(ti),ti] - x ’(t
i)H’( t

i) [H (ti)z
*
(t
j
)HI (t

i
)

+ R( t i) ] 1H(tj)x(ti) (29)

Repeating the above for k — i-I, .. . ,  i-N we get



- v[x(ti N ),tiN ] 
~ 

- 
~~~~

x ’(t
k
)Hh (t

k
) [H(tk) ~

*(t)

H ’ (t k) + R( t k) J H(t
k
)x(t

k) (30)

From (26) we have

[R (t k) + H ( t k ) E*(t ) H ’( t ) ] = { R( t k) + H( t k) [ t1 ( t k, tk l )P *( t k)

+ ~ ~~~~~~~~~~ 
(31)

and since $(tk, tk 1 )P*(tk)~~~(tk ,t k l ) is bounded from above for all k,

it can be deduced from (31) that there exists an ~j > 0 such that

[ R ( t k) + H(t k) E *( ) ~~~( ) ]  ~ [ R (t k) + 71H( t k) H ’( t k) J < ao (32)

Using (32) in inequality (30) we get

v[x(ti+i),tj+11 - vlx (ti_N ),ti_N J ~ ~~~~~~~~~~~~~~~~~~~ 
I R ( t k )

— l
+ 7J H(t k

) 1 1 1 ( t
k

) )  H(t
k)x( tk) (33)

Since (A.4) implies that (15) is discrete time observable and since

observability is invariant under output feedback contro l laws, It fol-

lows that the right hand side of (33) is strictly less than z* ro. Hence

there exists a 6
31 II x(ti+i) 111 such that (24) is satisfied , from

~~ which it can be concluded that (17) is asymptotically stable in the large.

QED
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Remark 1: Assumptions (A .1) and (A .2)  are equivalent  to the assump-

tion that system (17) is uni fo rmly  comp letely cont r o l l ab le  and is

needed to ensure the uni form boundedness of the contro l law (16) for

a l l  t , rind that of W ( t j , t 1+1) for  all  i

III . ASYMPTOTIC BE HAVIOR OF THE DISCRETE MINIMUM - VARIANCE

OUTPUT FEEDBACK CONTROL LM’J

In th is  sec t ion the s tead y state behavio r of the discrete minimum -

variance output feedback control law (16) is considered. The results

developed make use of the properties of the discrete matr ix  Riccati

equation , wh ich ha s been widel y investigated in the l i t e ra ture  [ 2 1  -

[51

LetZ (ti
) be the resulting state covariance of the closed-loop system

fo r any admissible control

u(t ,y(t~))= k(t) y(t1) (34)

Then the recursive relation that determines � (t
i
), is given by

~
(ti+1) =4 (ti+1,ti) [I + K(t i)H(t j )

~ ~ (t i) [I  + K ( t i)H(tj) ~ 
1

+ 
~~
(ti+1, tj)K( tj)R(ti)K

~
tj) 4’(tj+1,tj) + Q(tj,ti+i) (35)

where

~~(t0) —~~~ (36)

- 9 —
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and

t1+l

K( t 1) = J c Z ( t
1
, t) C(t)R(t) dt (37)

ti

Lemma 2: Assume that

W (t1,t1+1) > 0 (38)

The n the control law u*( t , y (t . ))as given by ( 16) minimIzes the state

covariance of the closed-loop system at the sampling time .

Proof: We would like to show that  for any u ( t , y ( t .) )  € U~

i = 0,1,... ,N-l (39)

where �( t 1) and � *(t1) are given by (35) and (8) respectively. Assume

for now that for some I

? ~~*( )  (40)

and let K*(t~) be given by

K*(tj) - ~ *(t1
)Hl(t

1
)IHI(t~) ~

*(tj)H( t
i) + R(t~) 

-l (41)

then it follows from assumption (40) that

-10 -
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E ( t 1~~1) ? ~ 
(t i÷1, t1) ( I  + K( t1

) H (t
1

) )  ~ *( t )  I I  + K( t
1)H(t1) I ’

+ 
~
(ti+i,ti

)K( t
i
)R( t

i)K’( tj)~~’(tj+1,t1) + Q(t i, t i+1)

> ~*(~~~~) +~~~
(t j ÷1, t i ) ~~ *

( t ) H I ( t ) 1 H(t~) 
\~*(t ) I l I ( t )

+ R (t i ) I ~~
H ( t i) ~~*( t~ ) ‘( t j +1, t j ) +

~~*( t ) H I ( t ) + R ( t~ ) 1K ’(t
~

)
~~

’(t
~+i, t j )

+ 
~ 

( t j +1, tj )K( t 1)H (t 1) ~~*( t )  
~~

‘ ( t j+1,t1
)

+ ~~(t~~ 1, t1) ~L *(tj)ul (t .)K1 (t .) 
~~

‘ (t j+1,t j )

> v~~( t )  + ~~
(t i+1, t~

) F K ( t 1) + K*(t i) I [H ( t 1) ~*(t )Hs(t )

+ R ( t 1) I 1K(t~) + K*(t 1) I ‘

~ ~*( )  (42)

Since ~ (t i,) = ~~ *( t )  — 
~~~ 

assumption (40) is satisfied for t , and

it follows from (42) that for any u It , y( t~)) EU c

and (39) follows by induction on 1.
QED

— 11 —
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It should be noted that lemma I is a generalization of the results

presented in reference [11 , where it was shown that u*(t, y(t~)1 mini-

mizes the trace of the state covariance at the sampling times.

A basic assumption that was used in showing the optiniality of u*[t ,y(t~)I

Is the a priori knowledge of the initial covariance of the state ~ (t).

In the sequel it will be shown that if assumptions (A.l) through (A.4)

are satisfied , then the steady state behavior of � *(t
1
) is independent

of ~..(t).

Let \ *(t t  ~~) denote the optimal value of the state covariance
matrix, starting from the initial value ~~

*
(t0
) = 

~~~~~
‘ 
and let

t1, ~~) given by

= (t~÷1~
t~ ) [I — K~ (t1, � )H(t

1
)) (43)

Where K*(t1, ~ ) is given by (41).

Then by simple matrix manipulations it can be shown that

I ~~*( t t  v )  — V *(t t 0 )  I ~ 
*t (t t O )

— 
V *

( t t  ~~
) — v *(t t O )  + FK*(t1, ~~) 

— K*(tj,0)J

Fu ( t 1) ~*( t t 0 ) N l ( t ) + R(t
1
)1 (K *(t~ , ~ ) - K*(ti,0) I

(44)

— 12 —
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from which it can be deduced that

,*(t t O )  {v *( tt ~~~~~~ ) - ~~*(t t O} 
~~~

‘(tj+1* tj,O)

- ~ *( t t O) (45)

Applying the above inequality repeatedly we get

~
*
(t t O )  

~~~~ ~~~~~~~~~~ 
> ~~~~~~~~~ 

~~) - Z
*
(t t O )

Since assumptions (A.l) - (A.4) are satisfied it follows from theorem I,

that there exist positive real numbers and 0
2 such that

lI~ *(t t O )II 
~ 

0
1 
e 2 I i+i 

- 
O P 

(46)

Hence

11w { Z *( t t  ~~) — ~ *(t t O }  ~ 0 (47)

t_ _
~ 

-

0

But since ~ 0, it follows from lemma 2 that

X *( t t  Z )  - Z*(t t o )  ~ 0 ;‘t
1 
and to (48)

I
From (48) and (47) it can be deduced that

— 1 3 —

— ~~~~~~~~~~~~~~~~~~~~~~



lim {
~~ 

*( t t  ~~) — ~~
*
(t t O)} = 0 (49)

H 
~~~~~~~~~~~~~0

Since •~ *( t t  Z) and ~*(t t O )  are bounded from above and

below it follows that

u r n  ~~*( t t  E) = u r n  ~
*(t

i+l,t ,O) ~ ~ *(t )  (50)

t ~~~~~~~~~~ to 0

Applying the above results to the problem under consideration we get:

Theorem 2: If assumptions (A.1)-(A.4) are satisfied then the output

feedback control law

u*(t, y(ti
)) = — G’(t) Z’(t1, t) W

1
(t1, t1+1) ~ 

*
(~~)~~t(~~) {ll(t1)

;*(t )H,(t ) + R(t~)} 
—1 y(t~) (51)

-I

minimizes

u r n  E {x(t1+1
)x’(t

~+1)} ~ u r n  
~ 
(t
i+i,t ,

t —— ~ t ~~~~~~~~~0

subject to the constraints (1) — (6) .

Where

- 1 4-



= t
~
(tj+l,

tj) { V~~~ (~~~~)  — ~ 
*
(t )H(t ) {11t

1 
~~*(t ) H I ( t )

-l
+ R(t1

) } H’( t1) ~ (t1)} ‘i’ 
‘(t

i+i,t1
) + Q( tj+i,tj) (52)

~ (t ) = 0

In the time invariant case where the output measurements are sampled

at a constant interval T, the matrices F, G, H, Q and R are independent

of time, it can be shown [ 4 J  , that

u r n  r*(t t � )  = lim •5~*( O )  = 
~~~* (53)

0 0

where * is the positive definite solution to the equation

(54)

In this special case assumptions (A.1) - (A.4) reduce to

(A. 1) {F, c} is a controllable pair

(A.2)’ {~Z (T) ,H} is an observable pair

(A.3)’ {~~(T),C} is controllable, where q CC’

and we have the following theorem:

Theorem 3: Assume that (A.l) - (A.3)’ are satisf ied, then the periodic

output feedback control law

— 15 —



u*(t, y(kT)) - C’ ‘1’ ‘(t, kT) W’~~(T) ~ ~11~ {1L~~~H’ + R}
1 
y (kT)

kT ~ t < (k + 1) T, k = k
0, 

k + I (55)

minimizes

lim E {x(kT)x’(kT) } ~ lim ~ (kT ,k , ~~) ; (56)

k —-rn
0 0 -

where

w(T) = 
1

T 

e~~
t c G’ e F’

~ dt 

. 

(57)

and is the positive definite solution of the matrix equation (54).

Furthermore the resultant closed-loop system is asymptotically stable

in the sense of Lyapunov.

The proof of the above theorem is similar to that of theorem 2 and hence

will be omitted . -

-16 -



IV. CONCLUSION

The discrete minimum variance output feedback control law considered

in this paper results in an asymptotically stable closed-loop system.

Hence besides Its optimality, this control law can be used in stabili-

zing linear systems by output feedback. The assumptions that were

made in establishing the asymptotic properties of the control law are

standard ones. Under these assumptions , the control law minimizes the

steady state value of the state covariance at the sampling times, re-

gardless of the assumed value of the system initial state covariance.

In the time invariant case , the output feedback gain approaches a

periodic function of time, which is easier to compute and implement.
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